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WEEKS 3 & 4 

GEC 241- APPLIED MECHANICS II- DYNAMICS 

KINETICS OF PARTICLES 

NEWTON’S SECOND LAW OF MOTION 

Kinetics is a branch of dynamics with the relationship between the change in motion of a body and the 
forces that cause this change. The basis for kinetics is Newton’s law, which states that when an 
unbalanced force acts on a particle, the particle will accelerate in the direction of the force with a 
magnitude that is proportional to the force. It can also be stated as: If the resultant force acting on a 
particle is not zero, the particle will have acceleration proportional to the magnitude of the resultant 
and in the direction of this resultant force. 

The law was verified by experimentally applying known unbalanced force F to a particle and then 
measuring the acceleration a. A constant of proportionality m was determined from the ratio m =F/a 
since the force and acceleration are directly proportional. This positive scalar m is called the mass of 
the particle. Being constant during any acceleration, m provides a quantitative measure of the 
resistance of the particle to a change in its velocity that is its inertia. 

This law can be mathematically written as  

𝑭𝑭 = 𝒎𝒎𝒎𝒎                                                     (𝟏𝟏) 

The above equation is one of the most important formulations in mechanics. 

When a particle is subjected simultaneously to several forces, the formula should be replaced by  

�𝑭𝑭 = 𝒎𝒎𝒎𝒎                                                 (𝟐𝟐)      

where ∑𝐹𝐹 represents the sum, or resultant, of all the forces acing on the particle. 

LINEAR MOMENTUM OF A PARTICLE: RATE OF CHANGE OF LINEAR MOMENTUM 

When the acceleration a is replaced by the derivative dv/dt in equation (2), then 

∑𝑭𝑭 = 𝒎𝒎𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

                                                   (𝟑𝟑)            

Or, since the mass m of the particle is constant, 

�𝑭𝑭 =
𝒅𝒅
𝒅𝒅𝒅𝒅

(𝒎𝒎𝒎𝒎)                                        (𝟒𝟒)  
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The vector 𝑚𝑚𝑚𝑚 is called the linear momentum or simply the momentum of the particle. It has the same 
direction as the velocity of the particle and its magnitude is equal to the product of the mass m and the 
speed v of the particle. Equation (4) expresses that the resultant of the forces acting on the particle is 
equal to the rate of change of the linear momentum of the particle. 

It is in this form that the second law of motion was originally stated by Newton. Denoting by L, the 
linear momentum of the particle, 

𝐋𝐋 = 𝒎𝒎𝒎𝒎                               (𝟓𝟓) 

and by 𝐋̇𝐋 its derivative with respect to t. this can be written as 

�𝐅𝐅 = 𝐋̇𝐋                                (𝟔𝟔)   

It should be noted that the rate of change of the linear momentum 𝑚𝑚𝑚𝑚 is zero when ∑𝐅𝐅 = 0. Thus, if 
the resultant force acting on a particle is zero, the linear momentum of the particle remains constant, 
in both magnitude and direction. This is the principle of conservation of linear momentum for a 
particle which can be recognized as an alternative statement of Newton’s first law. 

EQUATIONS OF MOTION 

Consider a particle of mass m acted upon by several forces then  ∑𝐅𝐅 = 𝐦𝐦𝐦𝐦. In order to solve problems 
involving the motion of a particle, however, it will be found more convenient to replace eqn.(2) by 
equivalent equations involving scalar quantities. 

Rectangular components.    Resolving each force F and the acceleration a into rectangular 
components, we write 

��𝐹𝐹𝑥𝑥𝒊𝒊+ 𝐹𝐹𝑦𝑦𝒋𝒋 + 𝐹𝐹𝑧𝑧𝒌𝒌� = 𝑚𝑚�𝑎𝑎𝑥𝑥𝒊𝒊+ 𝑎𝑎𝑦𝑦𝒋𝒋 + 𝑎𝑎𝑧𝑧𝒌𝒌� 

from which 

�𝑭𝑭𝒙𝒙 = 𝒎𝒎𝒂𝒂𝒙𝒙            �𝑭𝑭𝒚𝒚 = 𝒎𝒎𝒂𝒂𝒚𝒚            �𝑭𝑭𝒛𝒛 = 𝒎𝒎𝒂𝒂𝒛𝒛            (𝟕𝟕) 

Recall that the components of the acceleration are equal to the second derivatives of the coordinates 
of the particle, we have  

�𝑭𝑭𝒙𝒙 = 𝒎𝒎𝒙̈𝒙            �𝑭𝑭𝒚𝒚 = 𝒎𝒎𝒚̈𝒚            �𝑭𝑭𝒛𝒛 = 𝒎𝒎𝒛̈𝒛                (𝟖𝟖) 

 

 



GEC 241- APPLIED MECHANICS II – DYNAMICS                                                                          KINETICS OF PARTICLES      

MECHANICAL ENGINEERING DEPARTMENT                                                                                                   19/03/2015 

 

 

TANGENTIAL AND NORMAL COMPONENTS. 

    

Resolving the forces and the acceleration of the particle into components along the tangent to the 
path (in the direction of the motion) and the normal (toward the inside of the path) and substituting 
into eqn.(2), we have two scalar equations 

�𝑭𝑭𝒕𝒕 = 𝒎𝒎𝒂𝒂𝒕𝒕            �𝑭𝑭𝒏𝒏 = 𝒎𝒎𝒂𝒂𝒏𝒏                    (𝟗𝟗)   

Substituting for 𝑎𝑎𝑡𝑡  and 𝑎𝑎𝑛𝑛 , we have 

�𝑭𝑭𝒕𝒕 = 𝒎𝒎
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅            �𝑭𝑭𝒏𝒏 = 𝒎𝒎

𝒗𝒗𝟐𝟐

𝒑𝒑                       (𝟏𝟏𝟏𝟏)         

DYNAMIC EQUILIRIUM 

     

From eqn (2),∑𝑭𝑭 −𝒎𝒎𝒎𝒎 = 𝟎𝟎, which expresses that if we add the vector –ma to the forces acting on the 
particle, we obtain a system of vectors equivalent to zero. The vector –ma, of magnitude ma and of 
direction opposite to that of the acceleration, is called the inertia vector. The particle may thus be 
considered to be in equilibrium under the given forces and the inertia vector. The particle is said to be 
in dynamic equilibrium and the problem under consideration can be solved by the methods developed 
earlier in statics. 

In the case of coplanar forces, all the vectors including the inertia vector can be drawn tip-to-tail to 
form a closed vector polygon. Or the sums of the components of all the vectors in the figure above 
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again including the inertia vector can be equated to zero. Using rectangular components, we therefore 
write 

�𝑭𝑭𝒙𝒙 = 𝟎𝟎          �𝑭𝑭𝒚𝒚 = 𝟎𝟎     𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 

When tangential and normal components are used, it is more convenient to represent the inertia 
vector by its two components −𝑚𝑚𝑎𝑎𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 −𝑚𝑚𝑎𝑎𝑛𝑛  in the sketch below. The tangential component of the 
inertia vector provides a measure of the resistance the particle offers to a change in speed, while its 
normal component (also called the centrifugal force) represents the tendency of the particle to leave 
its curved path. It should be noted that either of these two components may be zero under special 
conditions:  

(1) If the particle starts from rest, its initial velocity is zero and the normal component of the inertia 
vector is zero at t = 0.  

(2) If the particle moves at constant speed along its path, the tangential component needs to be 
considered. 

 

     

 

ANGULAR MOMENTUM OF A PARTICLE 

RATE OF CHANGE OF ANGULAR MOMENTUM 
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Consider a particle P of mass m moving with respect to a Newtonian frame of reference 𝑂𝑂𝑥𝑥𝑥𝑥𝑥𝑥 . Recall 
that the linear momentum of the particle at a given instant is defined as the vector mv obtained by 
multiplying the velocity v of the particle by its mass m. The moment about O of the vector mv is called 
the moment of momentum or the angular momentum of the particle about O at that instant and is 
denoted by Ho. Recalling the definition of the moment of a vector and denoting by r the position vector 
of P, we write 

𝑯𝑯𝒐𝒐 = 𝒓𝒓 × 𝒎𝒎𝒎𝒎                     (𝟏𝟏𝟏𝟏𝒂𝒂) 

and note that HO is a vector perpendicular to the plane containing r and mv and of magnitude 
𝑯𝑯𝒐𝒐 = 𝒓𝒓𝒓𝒓𝒓𝒓 𝐬𝐬𝐬𝐬𝐬𝐬 𝐟𝐟                   (𝟏𝟏𝟏𝟏𝒃𝒃)    

MOTION UNDER A CENTRAL FORCE: CONSERVATION OF ANGULAR MOMENTUM 

     

When the only force acting on a particle P is a force F directed toward or away from a fixed point O, 
the particle is said to be moving under a central force, and the point O is referred to as the center of 
force. Since the line of action of F passes through O, we must have∑𝑀𝑀𝑜𝑜 = 0 at any given instant. 
Therefore we obtain  

𝐇̇𝐇𝐨𝐨 = 𝟎𝟎                        (𝟏𝟏𝟏𝟏) 
 for all values of t and, integrating in t, 
                                                                                      HO = constant                            (13) 
We thus conclude that the angular momentum of a particle moving under a central force is constant, in 
both magnitude and direction.  
Recalling the definition of the angular momentum of a particle, we write  
                                                                              r X mv = HO = constant                    (14) 
 from which it follows that the position vector r of the particle P must be perpendicular to the constant 
vector HO. Thus, a particle under a central force moves in a fixed plane perpendicular to HO. The vector 
HO and the fixed plane are defined by the initial position vector r0 and the initial velocity v0 of the 
particle. For convenience, let us assume that the plane of the figure coincides with the fixed plane of 
motion. 
Since the magnitude HO of the angular momentum of the particle P is constant, the right-hand member 
in Eq. (11b) must be constant. We therefore write 
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                                               rmv sin f = r0mv0 sin f0                                               (15) 
This relation applies to the motion of any particle under a central force. Since the gravitational force 
exerted by the sun on a planet is a central force directed toward the center of the sun, Eq. (15) is 
fundamental to the study of planetary motion. For a similar reason, it is also fundamental to the study 
of the motion of space vehicles in orbit about the earth. 
Alternatively, we can express the fact that the magnitude HO of the angular momentum of the particle 
P is constant by writing 
                                           𝒎𝒎𝒓𝒓𝟐𝟐𝒖̇𝒖 = 𝑯𝑯𝒐𝒐 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄                                            (16) 
or, dividing by m and denoting by h the angular momentum per unit mass HO/m, 
                                                            𝒓𝒓𝟐𝟐𝒖̇𝒖 = 𝒉𝒉                                                         (17) 
Equation (17) can be given an interesting geometric interpretation.  
 
NEWTON’S LAW OF GRAVITATION 

It states that two particles of masses M and m at a distance from each other attract each other with 
equal and opposite forces F and –F directed along the line joining the particles. The common 
magnitude F of the two forces is  

𝑭𝑭 = 𝑮𝑮
𝑴𝑴𝑴𝑴
𝒓𝒓𝟐𝟐                                (𝟏𝟏𝟖𝟖) 

where G is a universal constant, called the constant of gravitation.  

     
Experiments show that the value of G is (66.73 ± 0.003) × 10−12 𝑚𝑚3 𝑘𝑘𝑘𝑘𝑠𝑠2 ⁄ in SI units or 
approximately 34.4 × 10−9 𝑓𝑓𝑓𝑓4 𝑙𝑙𝑙𝑙. 𝑠𝑠4⁄  in U.S. customary units. Gravitational forces exist between any 
pair of bodies, but their effect is appreciable only when one of the bodies has a very large mass. The 
effect of gravitational forces is apparent in the cases of the motion of a planet about the sun, of 
satellites orbiting about the earth, or of bodies falling on the surface of the earth. Since the force 
exerted by the earth on a body of mass m located on or near its surface is defined as the weight W of 
the body, we can substitute the magnitude 𝑊𝑊 = 𝑚𝑚𝑚𝑚 of the weight for F, and the radius R of the earth 
for r, we obtain 

𝑾𝑾 = 𝒎𝒎𝒎𝒎 =
𝑮𝑮𝑮𝑮
𝑹𝑹𝟐𝟐 𝒎𝒎    𝒐𝒐𝒐𝒐   𝒈𝒈 =

𝑮𝑮𝑮𝑮
𝑹𝑹𝟐𝟐                            (𝟏𝟏𝟏𝟏) 
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where M is the mass of the earth. Since the earth is not truly spherical, the distance R from the center 
of the earth depends upon the point selected on its surface, and the values of W and g will thus vary 
with the altitude and latitude of the point considered. Another reason for the variation of W and g with 
latitude is that a system of axes attached to the earth does not constitute a newtonian frame of 
reference. A more accurate definition of the weight of a body should therefore include a component 
representing the centrifugal force due to the rotation of the earth. Values of g at sea level vary from 
9.781 m/s2, or 32.09 ft/s2, at the equator to 9.833 m/s2, or 32.26 ft/s2, at the poles. 
The force exerted by the earth on a body of mass m located in space at a distance r from its center can 
be found.  
The computations will be somewhat simplified if we note that according to Eq. (19), the product of the 
constant of gravitation G and the mass M of the earth can be expressed as  

𝑮𝑮𝑮𝑮 = 𝒈𝒈𝑹𝑹𝟐𝟐                                  (𝟐𝟐𝟐𝟐)  
 where g and the radius R of the earth will be given their average values g= 9.81 m/s2 and R= 6.37 X 106 
m in SI units and g=32.2 ft/s2 and R= (3960 mi)(5280 ft/mi) in U.S. customary units. 
The discovery of the law of universal gravitation has often been attributed to the belief that, after 
observing an apple falling from a tree, Newton had reflected that the earth must attract an apple and 
the moon in much the same way. While it is doubtful that this incident actually took place, it may be 
said that Newton would not have formulated his law if he had not first perceived that the acceleration 
of a falling body must have the same cause as the acceleration which keeps the moon in its orbit. This 
basic concept of the continuity of gravitational attraction is more easily understood today, when the 
gap between the apple and the moon is being filled with artificial earth satellites. 
 
KEPLER’S LAWS OF PLANETARY MOTION 
Kepler’s three laws of planetary motion can be stated as follows: 

1. Each planet describes an ellipse, with the sun located at one of its foci. 
2. The radius vector drawn from the sun to a planet sweeps equal areas in equal times. 
3. The squares of the periodic times of the planets are proportional to the cubes of the semi-

major axes of their orbits. 


